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Abstract

Large Language Models (LLMs) excel in natural language
processing but struggle with complex problem-solving in di-
verse technical domains, particularly those requiring precise
calculations or complex simulations. While connecting LLMs
to external tools to build LLM-based Agents can enhance
their capabilities, existing approaches often lack the flexi-
bility to address diverse and ever-evolving user queries in
open domains. Currently, there is also no existing dataset that
evaluates LLMs on diverse domain knowledge that requires
tools to solve. To address this gap, we introduce OpenAct,
a dataset comprising 339 science questions spanning 7 di-
verse domains that need to be solved with domain-specific
methods In our experiment, even state-of-the-art LLMs and
LLM-based Agents like GPT-4 and XAgent demonstrate shal-
low success rates on OpenAct, underscoring the need for a
novel approach. In response, we present OpenAgent, an in-
novative LLM-based Agent that can tackle evolving queries
in open domains, through autonomously integrating special-
ized tools. OpenAgent employs a novel hierarchical LLM
framework, Agency, where specialized agents handle specific
tasks. OpenAgent integrates new tools through a four-phase
process, learning from human discussions to overcome inte-
gration challenges and enhance its capabilities. Evaluation on
OpenAct demonstrates OpenAgent’s superior effectiveness
and efficiency that significantly outperforms current methods.

Introduction
Large Language Models (LLMs) (OpenAI 2022, 2023) have
demonstrated exceptional capabilities through diverse kinds
of traditional natural language processing (NLP) tasks. How-
ever, LLMs still struggle with specialized tasks that require
calculation, simulation, data augmentation, etc. To tackle it,
researchers equip LLMs with external tools (e.g., search
engines (Nakano et al. 2021; Qin et al. 2023a), calcula-
tors (Schick et al. 2023)) to function as agents that are capa-
ble of performing complex tasks, thus extend the capability
boundary of LLMs beyond traditional NLP tasks. Existing
LLM-based agents (AutoGPT 2023; Wu et al. 2023; XAgent
2023; Nakano et al. 2021; Qin et al. 2023a; Schick et al. 2023;
Parisi, Zhao, and Fiedel 2022) have access to a pre-defined
toolset, effectively combining the LLM’s cognitive abilities
with the specialized functionalities of these tools.

However, the effectiveness of current LLM Agents is con-
strained by the predefined toolset they rely on. This constraint
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Figure 1: The comparison between our work and previous
studies is illustrated from both dataset and model perspectives.

indicates that a model is capable of solving tasks within a
benchmark, whereas signifies that it is unable to do so.

restricts them to addressing only in-domain problems, being
incapable of solving diverse, open-domain questions. There-
fore, these agents don’t have the generalization ability on a
domain level. Moreover, the benchmarks used to demonstrate
these agents’ effectiveness are constructed based on these
predefined toolsets rather than real-world demands, which
fail to meet the requirements of open-domain tasks that often
require tools beyond the established set.

Numerous real-world tasks necessitate specialized tools
and domain-specific knowledge that extend beyond the in-
herent capabilities of pre-trained language models and a pre-
defined toolset. Such tasks, like gene mutation detection,
quantum chemistry analysis, and financial modeling, are typ-
ically executed by domain experts utilizing sophisticated
professional tools and software. For large language models
to effectively address these specialized tasks, they require
access to such tools, preferably through command-line inter-
faces (CLIs) or application programming interfaces (APIs).
In this context, GitHub emerges as a valuable resource as it
contains state-of-the-art implementations of algorithms and
methodologies employed by experts in their respective fields.

GitHub repositories not only reflect cutting-edge technolo-
gies across various disciplines but also highlight the impor-
tant problems and research directions in these fields. Based on
this understanding, we introduce OpenAct. The construction



of OpenAct began by identifying key issues and methodolo-
gies across multiple specialized domains. We then referenced
relevant tools and implementations on GitHub to carefully
design a series of tasks that both reflect actual domain needs
and fall within the potential capabilities of large language
models. OpenAct is the first comprehensive dataset designed
to evaluate LLMs on fulfilling open-domain real-world tasks.
It comprises 339 queries spanning 7 diverse domains, in-
cluding finance, chemistry, bioinformatics, computer vision,
and others. These queries are meticulously curated to require
specialized knowledge and multi-step problem-solving ap-
proaches, extending far beyond the capabilities of standard
LLM Agents with predefined toolsets. Selected tasks in tradi-
tional benchmarks and ours are list in Table 1.

To address this challenge, we propose a novel approach:
empowering LLM Agents to autonomously integrate tools
and enhance their capabilities, rather than relying solely on a
predefined toolset. This strategy aims to equip LLM Agents
with the ability to adapt and expand their functionalities in
response to diverse and evolving user needs.

As GitHub repositories serve as a valuable resource, if
LLM-based agents could effectively search for, deploy, and
utilize relevant repositories from GitHub, they could inde-
pendently extend their toolset. This capability would enable
LLM agents to dynamically adapt and grow their abilities,
significantly enhancing their versatility and effectiveness in
addressing complex, real-world applications.

For both LLMs and humans, the extension of tools based
on GitHub repositories presents several challenges: (1) Lack
of Quality Assurance: GitHub repositories often lack stan-
dardization and may contain flaws or bugs, and their docu-
mentation may also be incomplete, misleading, or contain-
ing errors. (2) Alignment Gap between Tools and Queries:
Tools on GitHub need adjustments to suit the user’s needs bet-
ter. The extensive size of the repository can make it challeng-
ing to locate the portions of the code needing modification.
(3) Complex Workflow for Tool Integration: Searching for
a suitable tool setting up the environment, and utilizing the
tool involve dozens of different tasks. The significant differ-
ences between these tasks can easily distract the LLMs from
completing the whole process effectively.

Motivated by the feature of these challenges, we intro-
duce OpenAgent, a novel LLM-based agent system that
autonomously extends tools from GitHub by hierarchically
decomposing the tasks for the tool extension. OpenAgent op-
erates through several phases, starting with searching suitable
repositories, then setting up the necessary environment, uti-
lizing the repository to fulfill user queries, and finally storing
the repository for efficient future use. By decomposing the
tool integration process into these structured phases, OpenA-
gent ensures that each step is handled comprehensively. This
approach not only addresses the current limitations but also
equips LLM agents with the ability to autonomously adapt
and grow in response to evolving user needs.

In summary, our contributions are threefold:
• We introduce OpenAct, a comprehensive dataset com-

prising 339 queries across 7 diverse domains, which is
specifically designed to evaluate the capabilities of LLMs’
open-domain capability in real-world scenarios.

Figure 2: Illustration of GPT-4-based OpenAgent performs
against baselines on 339 queries from 7 domains in OpenAct.

• We propose OpenAgent, a novel LLM-based Agent sys-
tem that autonomously extends its toolset by integrating
repositories from GitHub. OpenAgent employs a hierarti-
cal structure that dynamically decompose the tool integra-
tion process into distinct phases, addressing challenges
such as quality assurance and workflow complexity.

• We conduct extensive experiments on OpenAct to demon-
strate the effectiveness of OpenAgent compared to state-
of-the-art baselines, as demonstrated in Figure 2.

Related Work
LLM-based Agents Recent advancements in artificial in-
telligence have been significantly marked by the development
of Large Language Models (LLMs) such as ChatGPT (Ope-
nAI 2022), GPT-4 (OpenAI 2023), LLaMA (Touvron et al.
2023a,b), which have demonstrated remarkable proficiency
across a diverse range of tasks. Benefiting from LLMs, LLM-
based agents (AutoGPT 2023; Wu et al. 2023; Li et al. 2023;
XAgent 2023) have attracted research attention, which aims
to extend the capabilities of LLMs to interact with external
tools for accomplishing real-world tasks. However, existing
research typically supports a limited set of tools, which can-
not meet the diverse demands of humans. Recently, there
has been a focus on tool creation (Cai et al. 2023; Qian et al.
2023b; Wang et al. 2023; Qian et al. 2023a) for agents to
dynamically create tools. Nevertheless, the functionalities of
these created tools remain simple and limited, insufficient to
meet complex real-world user queries.

Benchmarking LLMs on Domain Knowledge and Tool
Use Different benchmarks evaluate LLMs across diverse
domains and capabilities. Domain knowledge benchmarks
initially focused on mathematics, with seminal works like



Benchmark Num. of Domains Task Source Task Types Multimodality Code Use Tool Use Open End Repository-Level
ToolBench (Qin et al. 2023b) - Tool QA ✗ ✗ ✓ ✗ ✗
MetaTool (Huang et al. 2024) - Tool QA ✗ ✗ ✓ ✗ ✗
AgentBench (Liu et al. 2023) - Tool QA ✗ ✗ ✓ ✗ ✗
GTSM8K (Cobbe et al. 2021) 1 Domain QA ✗ ✗ ✓ ✗ ✗
ScienceQA (Lu et al. 2022) 3 Domain QA ✓ ✓ ✗ ✗ ✗

SciEval (Sun et al. 2023) 3 Domain QA ✗ ✗ ✗ ✗ ✗
SciBench (Wang et al. 2024) 3 Domain QA ✓ ✓ ✗ ✗ ✗

SWE-Bench (Jimenez et al. 2024) 1 GitHub Coding ✗ ✓ ✓ ✓ ✓ (12)
ML-Bench (Tang et al. 2024) 1 GitHub Coding ✗ ✗ ✓ ✗ ✓ (14)

OpenAct (Ours) 7 Domain and Github QA and Coding ✓ ✓ ✓ ✓ ✓ (21)

Table 1: Comparison of Benchmarks for Evaluating LLMs on Domain Knowledge and Tool Utilization. The “Num. of Domains”
column indicates the number of knowledge domains evaluated by each benchmark, with “-” denoting benchmarks that do
not assess domain knowledge. “Open-Ended” denotes the presence of an open-ended environment for exploration within the
benchmark. “Repository-Level” specifies whether the tasks in the benchmark are scoped at the repository level, with the number
in the bracket denoting the number of repositories relevant to the benchmark.

GSM8K (Cobbe et al. 2021) and MATH (Hendrycks et al.
2021). Subsequent works(Lu et al. 2022; Sun et al. 2023)
broadened the scope to encompass three domains: mathe-
matics, physics, and chemistry. SciBench (Wang et al. 2024)
further advanced this approach by incorporating code inter-
preter functionality while maintaining focus on these three
domains. These benchmarks are typically derived from es-
tablished knowledge sources such as textbooks and curated
problem repositories, which do not fully capture real-world
complexities or cutting-edge questions in rapidly evolving
fields. In parallel, tool use datasets (Qin et al. 2023b; Huang
et al. 2024; Liu et al. 2023) are generally designed based on
the functionalities of various tools and APIs. More recently,
benchmarks have begun to bridge the gap between domain
knowledge and practical application by focusing on coding
tasks derived from real-world GitHub repositories. However,
their scope remains limited to specific domains(software en-
gineering for SWE-Bench (Jimenez et al. 2024) and machine
learning for ML-Bench (Tang et al. 2024)). In conclusion,
existing benchmarks remain limited in their scope, domains,
tool use, or coding tasks in isolation. They frequently lack the
combination of multimodality, code use, tool utilization, and
open-ended exploration that characterizes many real-world
problem-solving scenarios. Table 1 lists the main differences
between our benchmark and previous works.

Dataset: OpenAct
Dataset Construction
We introduce a high-quality benchmark, OpenAct, which
spans 7 distinct expertise domains, that bridges knowledge
in open domains with practical implementation resources.

Firstly, we engaged with specialists across 7 diverse do-
mains to identify frontier problems in their fields that are
potentially solvable through computational models. Then, we
conducted an extensive search of GitHub repositories, seek-
ing implementations that align with the identified domain
challenges. This process yielded an initial pool of potential
repositories for each domain. Initially, 10 candidate reposito-
ries are identified per domain. We then filter out repositories
with analogous task types or similar execution methods, re-
sulting in a refined selection of 21 repositories. Then we
employ GPT-4 to generate 30 query candidates of different
levels per repository. Through manual testing, we retain 5-10

queries per repository, ensuring their solvability using the
corresponding repository. Finally, it results in a total of 113
high-quality queries.

To investigate the impact of different levels of repository
information hints, we design three types of prompts for each
query: (1) Explicit Hint: Specifying an available repository
and its GitHub address; (2) Implicit Hint: Providing keywords
related to the repository’s domain or functionality; (3) No
Hint: No additional prompt is hinted the user queries.

Concatenating these prompts with the generated queries
yields a dataset of 339 instructions, covering diverse real-
world scenarios. Ground truth answers are constructed by
human experts for each query to establish a robust evaluation.
The key statistics of OpenAct are presented in Table 2.

Data Categorization
We categorized the collected repositories based on the diffi-
culty of the Setup and Apply phases.

For the Setup difficulty, we divided the collected repos-
itories into three classes: (1)Setup-Easy: The README
provides a detailed and correct setup tutorial, with which
the environment can be set up fluently. (2)Setup-Medium:
The README misses some details or contains slight flaws,
which requires the agent to solve based on error reports.
(3)Setup-Hard: The README provides an incorrect tutorial
because of human error or insufficient maintenance, which
need agents to find relevant Issue/PRs to solve.

Similarly, for the Apply difficulty, we divided repositories
into three classes: Apply-Easy: Simply requires running some
commands given by the README. Apply-Medium: Requires
writing configuration files or downloading extra resources,

Domain Num. of Repo. Num. of Query
Finance 2 45
Chemistry 4 66
Bioinformatics 2 30
Computer Vision 6 90
Network Analysis 2 30
Security Analysis 2 30
Visualization 3 48
Total 21 339

Table 2: Statistics of OpenAct.



like data and trained models. Apply-Hard: Requires modify-
ing the source code of the repositories. Sometimes need to
refer to relevant Issue/PRs for help.

Local Repository Snapshot
Given the dynamic nature of GitHub repositories, which can
undergo significant changes over time, we create a local snap-
shot of GitHub repositories accessed during the experiments
to ensure reproducibility and consistency. This snapshot pre-
serves the exact state of the repositories at the time of our
experiments. For repositories not included in the snapshot but
used by the LLMs, we allow real-time access from GitHub,
as they do not affect the controlled variables in this study.

Evaluation Metrics
We designed 2 evaluation metrics for tasks in OpenAct: Com-
pleteness and Pass Rate.

Completeness To precisely evaluate the performance of
OpenAgent under different settings, we designed a metric
to evaluate the whole execution process with a GPT-4-based
evaluation agent, scoring from 0 to 10. The evaluation cov-
ers three phases: Search, Setup and Apply. GPT-4 assigns
scores of [0, 3] for Search, Setup, and Apply, and [0, 1] for
the final answer’s correctness against a ”golden answer” from
generated by human expert. These scores are subsequently
aggregated and normalized to a 10-point scale to derive the
overall completeness score.

Pass Rate The Pass Rate is defined as the proportion of
queries that successfully meet the predefined criteria relative
to the total number of queries. For OpenAgent, a query is
considered to “pass” when its completeness score exceeds
0.9. In scenarios where only end-to-end results are available,
the evaluation is conducted exclusively based on the compar-
ison of the final answer with the expert-generated ”golden
answers”. A query is deemed to pass if there is a concordance
between these two answers.

We sampled 120 queries and results for human annota-
tion, achieving an 87.5% agreement with GPT-4 evaluations,
indicating the high reliability of both metrics.

Methodology
The complexity of autonomously integrating tools from
GitHub poses significant challenges for traditional LLM-
based agents like ReAct. To address this, we propose Ope-
nAgent, a hierarchical framework designed to effectively
manage these complexities.

Our methodology consists of three key components: an
Agency System for task decomposition, an Autonomous Inte-
gration process for tool integration, and an Experience Learn-
ing mechanism for continuous improvement.

Agency System
In the LLM as Agency framework, a complex task is de-
composed into a hierarchical structure wherein each agent
receives a query from a superior entity (whether superior
agent or human) and responds by directly interacting with
the world or designating sub-agent engagements. We denote

them as Action Call and Agent Call respectively. Action Calls
include command line execution, file check, submit to finish,
etc. Agent Calls include Environment Setup, File Creation/-
Modification, etc. This process can be formalized as follows:

An
i = Agentnk (Q

n, An
1 , O

n
1 , ..., A

n
i−1, O

n
i−1) (1)

Here, Agentnk represents the k-th agent at level n of the
hierarchy, An

i denotes the i-th action or sub-agent call by
Agentn, Qn is the query received from the agent’s superior,
and On

j and An
j are respectively the observations and preced-

ing actions/sub-agent calls that lead up to An
i .

If An
i is a sub-agent call, the query for Agentn+1 is de-

rived from An
i , such that Qn+1 ←− An

i . The sub-agent then
executes its designated operations based on this new query.

If An
i constitutes an action call, two scenarios arise. If

the action type is ”Submit”, indicating task completion, the
action sequence terminates and the outcomes are reported
back to Agentn, with On−1

k ←− An
i . Alternatively, the action

directly interacts with the environment E, and the resultant
environmental feedback is captured as On

i :

E′, On
i ←− Action(E,An

i ) (2)
where E′ represents the updated environment after the

action An
i is performed, and Action is an action.

This recursive process continues until the sub-tasks are
reduced to atomic, non-intelligent actions. The hierarchical
organization of agents and actions allows for efficient decom-
position and execution of complex tasks, with each agent
focusing on its specific sub-task. The collective behavior of
these agents and actions gives rise to the overall intelligent
behavior required for the task at hand.

We present the following pseudocode to illustrate the
Agency Algorithm with five variables: Q represents the query,
E represents the environment state, H represents the inter-
action history, A represents an action or agent, and O rep-
resents the observation. A.Query means A’s query for the
designated inferior agent and A.Report means A’s report to
its superior agent when finishing its tasks.

Algorithm 1: Agency Algorithm
1 Function Agent(Q, E):
2 H ← [Q]
3 while True do
4 A← LLM(H)
5 if IsAgent(A) then

// Call this function
recursively

6 E,O ← Agent(A.Query, E)
7 else
8 if A.Type = “Submit” then
9 return E,A.Report

10 end
11 E,O ← Action(A.Action, E)
12 end
13 H.Append(A,O)
14 end
15 return



Autonomous Integration
Repository Search During the Search phase, the agent
finds suitable repositories that can be used to accomplish user
queries. The repositories come from two resources: reposi-
tories stored in the past and repositories hosted in GitHub.
Hence, this phase contains three subtasks: (1) Stored Reposi-
tory Retrieval: The agent retrieves from existing stored repos-
itories by judging their suitability with the user query. If a
repository is deemed suitable, its environment is loaded, by-
passing the subsequent Setup phase, and directly enters the
Apply phase. (2) GitHub Repository Search: If the stored
repositories cannot be used to accomplish user queries, the
agent will resort to GitHub to search for suitable ones. There
are two ways to search for repositories. If the user queries
specify the particular repositories, the agent will take action
to call GitHub search by name API directly. If not, OpenA-
gent should search for the proper repositories according to
the repository function. As GitHub lacks the semantic search
API, we resort to the topic search API. The agent would
extract a list of potential GitHub topics from the query and
subsequently call GitHub search by topic API to search repos-
itories. (3) Repository Function Judgment: Upon obtaining
repository candidates, the agent judges each repository’s suit-
ability in resolving the user query. The agent will read the
README of each repository to understand its function and
then deliver a judgment on the repository’s suitability.

Environment Setup Upon identifying the suitable repos-
itories, the agent would initiate the Setup phase aimed at
configuring their execution environment. The agent com-
mences by cloning repositories from GitHub and executing
commands (including the installation of dependencies and
download of requisite data) according to the README. Due
to the non-standardization problem, there may exist flaws
or bugs in the repositories so the agent will initiate a Pull
Requests Exploration or Issues Exploration subtask to lever-
age human practice experience to resolve the problems. If
necessary, the agent will initiate a File Modification subtask
to modify the source files of the repository to fix the bugs.

Tool Application Given the configured environment, the
agent proceeds to apply the repository to address the user
query. This application process varies based on the com-
plexity and design of individual repositories. Well-developed
repositories provide clear entry for allowing straightforward
applications (e.g., Command-Line Interface). Nevertheless,
for those non-standardized repositories that do not provide
clear entry, especially lacking detailed documentation, the
agent needs to resort to human experience again (see in Sec-
tion 15). If extensive output (e.g., lengthy execution logs)
ensues, the agent needs to go to the Long Context Process
subtask which writes a Python program (e.g., regular expres-
sions) to extract critical information from the lengthy file.
Thus, the File Modification subtask is also involved.

Knowledge Store After accomplishing the user query, the
agent proceeds to store the repository together with its exe-
cution environment to facilitate future usage, especially for
recurring or similar user queries. Specifically, the execution
environment will be stored in a docker image so if a simi-

lar query comes, the agent can retrieve this repository and
restore it to apply directly. To enhance the stored repository
retrieval, the agent should abstract its understanding of the
repository’s functionalities (i.e., the Function Description
subtask) and summarize the experience in the apply phase
(i.e., the Experience Summarization subtask).

Note that although we design this hierarchical strategy,
which phase, subtask, or action to be achieved is decided by
OpenAgent itself dynamically. We do not limit the agent’s
behavior strictly.

Experience Learning
We developed and implemented an experience learning fea-
ture for OpenAgent, encompassing both in-task and cross-
task learning paradigms.

Due to the non-standardization of GitHub repositories,
some lack perfect READMEs and necessary setup infor-
mation. Additionally, flaws in the source code can pose
challenges. In such cases, learning from human experiences
becomes an efficient approach. Building upon the Agency
System framework, we introduce a specialized agent, the
Issue/PR Agent, AgentIssue/PR, to handle the experience learn-
ing process. This agent is called when a higher-level agent
encounters a problem that might benefit from past experi-
ences or community solutions. AgentIssue/PR is responsible
for searching, evaluating, and returning relevant information
from GitHub Issues and Pull Requests.

We can formalize the Issue/PR Agent’s role within the
Agency framework as follows:

AgentIssue/PR(Q
′
)← An

i (H) (3)

where H is the interaction history, Q
′

is the query for
AgentIssue/PR to solve. AgentIssue/PR will then retrieve a set of
Issus/PRs S = {s1, s2, ..., sn} from GitHub, judge them one
by one:

ri ← AgentIssue/PR(Q
′
, si) i = 1, 2, . . . , n (4)

where ri to rn are relevance scores. Then it select the most
relevant solution s∗ = argmaxsi∈S ri and report it to An

i ,
which will result in H ← H + [AgentIssue/PR, s

∗]. An
i will

then continue with PR/Issue augmented history.
Apart from in-task knowledge learned from community

experiences and solutions, OpenAgent can also learn from its
own experiences across tasks, and solidify these experiences.

The agent’s policy π(At|St, E) defines the probability of
taking action At given the state St and accumulated expe-
rience E. St includes current observations and historical
information, while E represents past learning outcomes. The
policy aims to maximize expected long-term rewards. If no
prior experience E exists, the policy is π(At|St).

After each task, the agent summarizes its experience based
on the environmental feedback, formalized as a set of rules
or patterns E.

E ← f(E,Rt, St, At) (5)
where f(·) is the experience summarization function, im-

plemented using a large language model. Rt is the semantic
reward obtained after action At.



Methods Finance Chemistry Bioinformatics Computer Vision Network Analysis Security Analysis Visualization All
GPT-3.5-Turbo Based

LLM 0 36.4 0 0 0 0 31.3 11.5
ReAct 2.2 3.0 3.3 6.7 0 0 0 2.4

ReAct + Sum. 0 0 0 0 0 0 0 0
OpenAgent (Ours) 8.9 24.2 23.3 8.9 10.0 33.3 20.1 17.1

GPT-4 Based
LLM 0 68.2 0 0 0 0 43.8 19.5

XAgent 0 40.9 0 0 40.0 0 81.3 23.0
ReAct 51.1 19.7 17.8 22.2 10.4 30.0 23.3 24.6

ReAct + Sum. 31.1 19.7 26.7 22.9 14.8 33.3 26.7 24.4
OpenAgent (Ours) 68.9 34.9 86.7 45.6 16.7 43.3 35.4 47.3

Table 3: Pass Rates (%) of different methods across various domains in the OpenAct dataset. Results are shown for both
GPT-3.5-Turbo and GPT-4 based implementations. “All” represents the overall pass rate across all domains.

If there is no prior experience E, the summarized self-
experience E is added to the decision process, updating the
policy π(At|St) to π(At|St, E). If E exists but changes,
π(At|St, E) adapts accordingly. This process introduces an
experience-based heuristic method, allowing the agent to ref-
erence past experiences and make more informed decisions,
ultimately improving task success rates.

π∗ = argmax
π

E[Rt|St, At, π] (6)

Through this adaptive and evolving approach, the agent
not only enhances its ability to solve specific tasks but also
develops a general pathway for learning and improvement,
maintaining efficiency and adaptability in diverse and dynam-
ically changing task environments.

Experiment
Experiment Settings
Baseline To validate the effectiveness of our OpenAgent,
we design the following baselines: (1) LLM: Raw LLMs
without external tools (2) ReAct (Yao et al. 2022): ReAct is a
widely-used LLM-based agent task-solving technique (Auto-
GPT 2023; Wu et al. 2023). It can accomplish intricate tasks
on the fly by decomposing them into explicit intermediate
steps. In our settings, ReAct is equipped with the same ac-
tions as our OpenAgent to extend tools from GitHub for fair
comparison. (3) ReAct+Summary: Due to the complexity of
the tool extension, the whole process tends to involve lengthy
context, surpassing the context window of LLMs. Hence, we
design this ReAct variant which will summarize the context
when the length of the context reaches the threshold. (5) XA-
gent (XAgent 2023): XAgent is a powerful general-purposed
LLM-based agent, which is equipped with numerous external
tools and can reason, plan, code and reflect.

Implementation Details We implement OpenAgent
and baseline methods except XAgent based on the
gpt-4-0125-preview and gpt-3.5-turbo-16k re-
spectively with a 0.7 temperature, under a 0-shot setting.
There is no GPT-3.5-based XAgent because its behindhand
reasoning and planning ability can’t support XAgent’s com-
plex workflows. All actions including API callings, command
executions, and agent operations are implemented based on

the Function Calling feature1 of GPT series. To denote the
finish of each phase (Search, Setup, Apply, Store), we addi-
tionally add Submit action in the function list. If the agent
thinks it has accomplished each phase, it should call the Sub-
mit function to finish the phase. Additionally, the OpenAgent
results presented here reflect the success rate on the first en-
counter with the problem, incorporating PR/Issue but without
using experience summary to enhance the strategy.

Overall Evaluation
Table 3 reports the Pass Rates of each method. We get several
observations: (1) While raw LLMs and XAgent demonstrate
good performance in familiar domains like Chemistry and
Visualization, it is impossible for them to fulfill questions in
unacquainted domains like Bioinformatics, Finance, etc. (2)
ReAct achieves a lower Pass Rate than the agency structure
in both settings, which demonstrates that simply adapting
the ReAct framework cannot achieve good results. (3)Re-
Act+Summary achieves lower performance than ReAct be-
cause the summarization will lose critical information. Thus,
it is infeasible to avoid the over-length problem by simply
summarizing the long context. (4) All GPT-4-based methods
outperform their GPT-3.5 counterparts significantly, showing
that tool extension is a challenging task needing powerful
LLMs to achieve. (5) OpenAgent with agency architecture
significantly outperforms all baselines and incurs the least
computation cost in both settings, demonstrating the effec-
tiveness and efficiency of the tool extension.

Impact of Human Experience Learning

Method w/o PR/Issue w/ PR/Issue w/ Sum. Exp
GPT-3.5 8.2 17.1 58.8
GPT-4 40.3 47.3 82.3

Table 4: Results of Human Experience Learning.

To evaluate the effectiveness of human experience learning,
we conducted an ablation study by removing the PRs and
Issues availability and re-running the main experiments. The

1https://openai.com/blog/function-calling-and-other-api-
updates



results, shown in Table 4, highlight the significant impact of
utilizing PRs/Issues and summarized experience.

Without PRs/Issues, the pass rate for GPT-4 drops to
40.3%, clearly demonstrating the non-standardization prob-
lem of GitHub repositories and the necessity of learning from
PRs/Issues to overcome these challenges.

Furthermore, to validate the effectiveness of the summa-
rized experience, we utilized a GPT-4-based model to sum-
marize the practice experience and then re-ran the queries,
allowing the model to retrieve and use the stored experience.

The results show that leveraging the experience summa-
rized by a GPT-4-based model, a GPT-3.5-based model can
achieve a higher pass rate than a GPT-4-based model without
summarized experience. This further proves the effectiveness
and necessity of human experience learning.

Simultaneously, the GPT-4-based model achieves an even
higher pass rate when utilizing the experience it summarized
itself. This indicates that the model can learn from previous
practical experiences to boost its performance. Such an ad-
vantage is highly beneficial for real-world applications as
it means that the model will evolve along with its practice,
continually improving and adapting to new challenges.

Impact of Search Difficulty

Hint Type Explicit Implicit No Hint
Search Success Rate 96.3 65.5 31.9

Table 5: Analysis for the search difficulty.

Searching GitHub for proper repositories is challenging, so
we conducted experiments to show the impact of search diffi-
culty. As introduced, we designed three types of prompts to
denote target repositories and calculated the Success Rate for
each. If OpenAgent finds the correct repositories for a query,
it is a search success (it needn’t be the exact repository the
query was constructed from). We then calculated the propor-
tion of successful searches for each type of prompt, as shown
in Table 5. Explicit Repo Prompt had the highest Search Suc-
cess Rate (near 100%) as it specified repositories. Implicit
Repo Prompt achieved 65.5%, indicating OpenAgent can
infer relevant GitHub Topics from domains or careers. With
no repository prompt, the search success rate dropped sig-
nificantly. This shows OpenAgent struggles to infer GitHub
Topics from the query alone, indicating a need for further
research to improve performance in this scenario.

Impact of Setup and Apply Difficulty

Setup/Apply Difficulty Easy Medium Hard Total
Easy 72.3 69.0 56.2 64.4
Medium 60.7 70.0 41.5 57.7
Hard 50.0 67.0 51.5 57.4
Total 64.1 68.7 51.4 60.7

Table 6: Analysis for the setup and apply difficulty.

Table 6 shows the Pass Rates for the repositories catego-
rized based on Setup and Apply difficulties.

For setup difficulty, both Medium and Hard repositories
achieve similar Pass Rates. We attribute this to OpenAgent’s
human experience learning capability that helps overcome
imperfect READMEs.

For apply difficulty, the Pass Rate for Hard decreases by
over 12% compared to Easy and Medium. This demonstrates
that while OpenAgent can effectively handle repositories
with easy and medium Apply difficulty, it requires further
study to conquer those with hard Apply difficulty.

Error Analysis
Despite our method’s ability to autonomously extend tools
from GitHub, we observe some failures.

Repository Select Failure OpenAgent sometimes selects
inappropriate repositories to address user queries, especially
when the query does not specify a repository. The agent’s de-
cision heavily relies on README files, which may lack clear
descriptions. For instance, in the finance scenario, OpenA-
gent sometimes wrongly chose the vnpy repository, which
is meant for quantitative trading rather than for research on
models and strategies.

Environment Configuration Failure Failures in
environment setup were noted in repositories like
Bringing-Old-Photos-Back-to-Life, where a
non-functional dockerfile was presented, and the correct
one was in a Pull Request. OpenAgent sometimes modified
the incorrect dockerfile instead of accessing the correct
version, resulting in unresolved bugs and setup failures.

Execution Configuration Failure The Qlib repository
requires a specific configuration file for execution, including
dataset settings, model hyperparameters, and backtesting pa-
rameters. Misconfigurations, such as incorrect time ranges
or file paths, led to execution failures. These errors high-
light the need for more robust decision-making and improved
repository documentation.

These insights indicate areas for improving OpenAgent’s
robustness in complex scenarios. We also conduct a Case
Study in Appendix to further illustrate OpenAgent’s process.

Conclusion
In this paper, we introduced OpenAct, a comprehensive
dataset designed to evaluate the capabilities of LLMs in open-
domain, real-world scenarios. Our experiments highlighted
the limitations of existing LLM-based agents and demon-
strated the effectiveness of our proposed OpenAgent system.
OpenAgent’s hierarchical framework and autonomous tool
integration significantly enhance LLM capabilities, allowing
them to tackle complex tasks across diverse domains. By
leveraging human experience through GitHub repositories,
OpenAgent adapts and improves over time, showing promise
for future applications in intricate problem-solving. Our work
paves the way for more robust and flexible LLM-based agents,
capable of evolving alongside rapidly changing technological
landscapes. Future research will focus on further refining the
integration process and expanding the range of applicable
domains, ultimately aiming to create a versatile agent that
can seamlessly handle a wide array of real-world challenges.
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Appendix
This Appendix includes:

• Prompts for OpenAgent
• Details of OpenAct
• Case Study of OpenAgent on OpenAct

Prompts
Main Agent
You are a professional programmer. Given a
query, your task is to search for a GitHub
repository and use it to solve the query.

You should make sure the result of the ‘
apply‘ function well completes the query. If
it lacks of required elements, you can call
‘apply‘ again if you think the result is

close to what you want and you think this
repository can be used to solve your query.
You can also call the ‘search_by_query‘
function to find another repository if you
think this repository is not suitable for
your query.

Query:{{query}}

Search Agent
w/o Cached Repositories
You are a professional programmer. Given a
task, you want to find a GitHub repository
to solve the task.

w/ Cached Repositories
You are a professional programmer. Given a
task, you want to find a GitHub repository
to solve the task. Now, your colleagues have
explored some repositories. If you think

any of the repository(s) might solve your
task, call the ‘use_existing_repository‘
function to use it. Otherwise, call the ‘
find_a_new_repository‘ function to find
another repository.

You will be given the query of the task and
name(s) and description(s) of existing
repositories.

Repository’s name: {{name of repository 1}}
Description: {{description of repository
1}}

Repository’s name: {{name of repository 2}}
Description: {{description of repository
2}}

......

Setup Agent
You are a professional programmer. Your task
is to set up the environment of the

repository and prepare the necessary data.

You will be provided with the readme file of
the repository. You can also use the ‘

check_file_or_directory‘ function to check
the ‘/<==repo_name==>‘ directory whether
there is an existing Dockerfile. If setting
up the environment is complex and there is
an existing dockerfile, you can use the ‘
set_container_with_existed_dockerfile‘
function to directly use that dockerfile. If
there is any problem with the dockerfile,

you can try to use the ‘
read_pulls_to_solve_problem‘ function to see
the pulls of this repository to solve the

problem. However, ‘
read_pulls_to_solve_problem‘ should not be
used for reasons other than troubleshooting
issues with the Dockerfile. If the existing
dockerfile is built successfully, you can
call the ‘submit‘ function directly with the
property "work_directory" marked because

the required docker container has already
been built.

Usually, the dockerfile is close to ‘/<==
repo_name==>‘, so if you don’t find it in
one or two tries, it means there isn’t a
dockerfile in this repository. You don’t
need to try more times.

If there is no existing docker file, you
should analyze the readme file derive the
necessary commands and execute them to set
up the environment of the repository, and
prepare necessary data in a given container,
whose base image is ’continuum/miniconda3’.
If an error happens due to an inappropriate
base image, you can use ‘echo‘ to create a

docker file yourself, with the proper base
image and necessary packages, and build it.

While operating, please note the following
points:
- The commands will be run in a docker
container. You don’t need to use virtual
environments, use the base environment only.
Use pip or conda to install packages. In

special cases, you can use apt-get to
install necessary packages. If you use apt-
get, do not forget to use apt-get update and
--fix-missing.

- Any command requiring execution in a
specific directory should be reformulated as
: ‘/bin/sh -c "cd <specific directory> && <
commands to be executed in this directory>"
‘. Every command must start with ’/bin/sh -c
" cd ’ to locate a specific directory.

- The repository has been cloned to the root
directory at ‘/<==repo_name==>‘.

- Follow the sequence of the commands,
install all necessary packages first.
- Never create or activate any conda
environment even if the readme requires or
does so. You should install the packages in
the base environment.



- If you have a problem with the version of
Python, please reinstall Python of the
appropriate version with ‘conda install
python=<version>‘.
- If a function you called returns you with
a file path, you should pass the file path
to the next function you call if needed.
- If there are different choices to do the
same task and you fail to use one of them,
you can try another alternative.

Your commands should be the parameter of the
‘execute_command‘ function. Each time you

should send one or many commands. The ‘
execute_command‘ function will run the
commands and return the output of the
commands.

In this step, you should just set up the
environment and prepare the data. You don’t
need to run other programs or train the
model.

Readme of the repository: {{readme}}.

Apply Agent
You are a professional programmer. Your task
is to utilize a GitHub repository to solve

a given query. You will operate in a docker
container.

Note that it has been ensured that the
repository’s environment has been set up and
all the data required by the readme has

been fully prepared, so you mustn’t execute
any command to set up the environment
prepare the data, or check relevant files
about the environment or data anymore unless
the user provides you with a link to

download necessary data. <==data_path==>

Also, all the dependencies have been
installed in the base environment, please
don’t switch to any other conda environment.
If you find you lack any packages or tools

while operating, use pip, conda, or apt-get
to install it. If you use apt-get, do not
forget to use ‘apt-get update‘ and ‘--fix-
missing‘.

Your goal is to study the readme file,
especially the command lines in it, and call
appropriate functions to utilize the

repository to solve the query. Do not
execute any command to get results that you
can’t perceive yourself, like starting a
server.

Note that the default configuration of the
final executable file may not meet the
demand of the query. If there are any
special demands in the query, you should
check the final executable file to see
whether it meets the demand of the query. If

not, you should make proper modification(s)
.

If you run a command and find the result
lacks of required element(s), which may be
because the repository itself doesn’t
support the relevant function, you can check
the issues to try to solve the problem.

If you need to deal with files provided by
the user, you should first use ‘
upload_directory_to_container‘ to upload it
from local to the docker container. By
default, the path claimed in the query is
local, you need to upload it. If a required
message can be retrieved from the output of
the execution of the program, summarize it
in natural language and submit it. If any
file is generated to answer the query, you
should use ‘
download_directory_from_container‘ to
download the file from the docker container
to local before you submit it if necessary.
You should also ensure that the required
directories all exist before running a
program.

We only have a CPU. If the repository doesn’
t ask for the configuration of the device,
ignore it.

Query: {{query}}

Readme:{{readme}}

Modify Agent
You are a professional programmer. Your task
is to modify (s) to code files to meet the

given requirement. You will be given the
query of modification, the content of a file
, and the path to the file. If you think you
can meet the query by modifying this file,

you can modify this file.

If the query contains a path that contains
information for modification, transmit that
path at "query_file_path" in "
modify_entire_file". You don’t need to check
the query file yourself, because you may

neglect important messages by checking and
summarizing, just pass the query path and
let the "modify_entire_file" function decide
.

Code relevant to the query may not always
reside in the currently provided file. In
such cases, you should analyze the ‘from...
import...‘ or ‘<module name>...‘ sections to
suggest potential target file paths.

If the target path in the current file is a
relative, you should decide the target file
based on the current f i l e s path.



If it starts from a module’s name, which
suggests the file is a Python package, the
file is in the ‘/opt/conda/lib/python3.11/
site-packages/<package name>‘ directory (
python version should be decided by using
the ‘which pip‘). Don’t forget the suffix of
the file.

You might need to locate the target file by
checking the content of the files
recursively. After the target file is
located, you should use proper functions to
modify the code.

Modification Query: {{query}}

Original Code: {{code}}

Judge Agent
You are a professional programmer. Your task
is to judge how well a programmer uses a

GitHub repository to handle a query. You
will be given a query and the actions the
programmer took to handle the query. If the
task includes an input or output file, you
will be given a path to the programmer’s
output. The input path is in the query and
the path to the ground truth outcome will be
given if there is ground truth. You can

check the content in these paths and use
proper ways to judge the relevance of
different files. If the files are readable
you can directly check them. If not, you can
use the provided functions to check the md5
hash value of the files or compare the

similarities of different images. Note that
you can only check the directory or file
saved locally. If no input path, output path
, or truth path is given, do not check the
file or directory, just score based on the
log.

// For ReAct & ReAct + Summary
The rule of scoring is as follows. The
initial score is 0. You will be given the
log of the user-calling functions to use the
repository. For correctly setting up the

environment and preparing the data, 2 points
should be added for the environment and 1

point should be added for the data. If no
data is required, a point for data should be
added.\ In the given application phase, 0˜4
scores should be added based on the

performance. You should judge the
performance based on whether it follows the
instructions in the readme. If the right
actions(including commands and function
calling) are taken and get a result, you
should add 4. If the asked configuration is
not applied or wrong actions are taken,
minus 1 point for each fault based on 4. If
ground truth is provided, if the result of
the application is not correct, minus 1
point.\nIn conclusion, the final score is

the sum of the scores of the setup (0˜3) and
application phase (0˜4).

// For GitAgent
The rule of scoring is as follows. The
initial score is 0. You will be given the
log of the user calling functions to use the
repository, without the steps the

environment is set up .\nIn the given
application phase, 0˜4 scores should be
added based on the performance. You should
judge the performance based on whether it
follows the instructions in the readme. If
the right actions(including commands and
function calling) are taken and get a result
, you should add 4. If the asked
configuration is not applied or wrong
actions are taken, minus 1 point for each
fault based on 4. If ground truth is
provided, if the result of the application
is not correct, minus 1 point.\nGenerally,
if a valid output is given, the score should
be 4.

Query:{{query}}

Action:{{action_log}}

Input path:{{input_path}}

Output path:{{output_path}}

Ground Truth path:{{truth_path}}

Repository Details
Overall Statistics
Please refer to Table 7 for the overall statistics regarding the
repositories.

Repositories Categorized by Field
Please refer to Table 8 for the field of each Github repository.

Repositories Categorized by Difficulties
Please refer to Table 9 for the difficulty of each Github repos-
itory.

Case Study
To detail how OpenAgent works during the whole tool exten-
sion process, we conduct the case study to demonstrate the
behavior of OpenAgent.

Adaptive Repository Search Strategies. OpenAgent
demonstrates a remarkable ability to autonomously select and
implement varied search strategies for repository retrieval
(see in Figure 3). This adaptability is evident from its high
search success rate across different repositories. OpenAgent
tailors its search approach based on the specificity of the user
query. For instance, in the case of Sniffles, where the
repository name is provided (Figure 4), OpenAgent directly
searches for the repository using the given name. In contrast,
for queries of Qlib, where no specific repository is mentioned



Table 7: GitHub Repositories

Author Name Address
danielgatis rembg https://github.com/danielgatis/rembg
ocrmypdf OCRmyPDF https://github.com/ocrmypdf/OCRmyPDF
cdfmlr pyflowchart https://github.com/cdfmlr/pyflowchart
HarisIqbal88 PlotNeuralNet https://github.com/HarisIqbal88/PlotNeuralNet
lukas-blecher LaTeX-OCR https://github.com/lukas-blecher/LaTeX-OCR
s0md3v Photon https://github.com/s0md3v/Photon
s0md3v Bolt https://github.com/s0md3v/Bolt
s0md3v Smap https://github.com/s0md3v/Smap
MultiQC MultiQC https://github.com/MultiQC/MultiQC
xinyu1205 recognize-anything https://github.com/xinyu1205/recognize-anything
bukosabino ta https://github.com/bukosabino/ta
molshape ChemFormula https://github.com/molshape/ChemFormula
tencent-quantum-lab TenCirChem https://github.com/tencent-quantum-lab/

TenCirChem
harirakul chemlib https://github.com/harirakul/chemlib
ultralytics yolov5 https://github.com/ultralytics/yolov5
mermaid-js mermaid-cli https://github.com/mermaid-js/mermaid-cli
microsoft qlib https://github.com/microsoft/qlib
fritzsedlazeck Sniffles https://github.com/fritzsedlazeck/Sniffles
MolecularAI aizynthfinder https://github.com/MolecularAI/aizynthfinder
microsoft Bringing-Old-Photos-

Back-to-Life
https://github.com/microsoft/Bringing-Old-Photos-
Back-to-Life

PyCQA bandit https://github.com/PyCQA/bandit

Table 8: GitHub repositories categorized by 7 fields.

Domain Repository

Finance microsoft/qlib
bukosabino/ta

Chemistry

molshape/ChemFormula
tencent-quantum-lab/TenCirChem
harirakul/chemlib
MolecularAI/aizynthfinder

Bioinformatics MultiQC/MultiQC
fritzsedlazeck/Sniffles

CV

danielgatis/rembg
lukas-blecher/LaTeX-OCR
ultralytics/yolov5
microsoft/Bringing-Old-Photos-Back-to-Life
mermaid-js/mermaid-cli
xinyu1205/recognize-anything

Network Analysis s0md3v/Photon
s0md3v/Smap

Security Analysis PyCQA/bandit
s0md3v/Bolt

Chart Paint
cdfmlr/pyflowchart
ocrmypdf/OCRmyPDF
HarisIqbal88/PlotNeuralNet

(Figure 5), the agent summarizes relevant GitHub repository
topics from the query and sequentially searches these topics
to identify the most suitable repository.

Dynamic Handling of Setup Challenges. The agent is
proficient in managing setup processes, even in the pres-
ence of bugs or incomplete information in the official reposi-

tory documentation. For repositories like AiZynthFinder,
with comprehensive setup instructions in the README (Fig-
ure 6), OpenAgent efficiently follows the guidelines to set
up the environment. Conversely, for repositories such as
Bringing-Old-Photos-Back-to-Life, although it
provides an official dockerfile to build the execution environ-



Table 9: GitHub repositories classified by 9 types of difficulties.

Application
Easy

ApplicationMedium ApplicationHard EnvironmentEasy PyflowchartBoltyolov5 OCRmyPDFRembg
TenCirChemChemFormulaChemlibEnvironmentMedium MultiQCPhotonSmap Banditrecognize-everything
Aizynthfindermermaid-cliEnvironmentHard Latex-OCR Bring-Old-Photos-Back-to-Life qlibPlotNeuralNet

I am a fintech researcher 
aiming to utilize data from the 
A market (csi300) to train a 
LightGBM model. You should 
give me the back test result.

fintech
market-forecasting
machine-learning
financial-modeling

…

vnpy/vnpy
microsoft/qlib
waditu/tushare

……/FinGPT
……

User Query Search by topic

User Query Search by Name

Use a Github repository named 
Sniffles to help me to detect 
the structural variations in 
given gene sequences and save 
the structural variations in 
output result.vcf.

Sniffles fritzsedlazeck/
Sniffles.git

Repos

Repo
…… However, the 
repository seems to not 
support the LightGBM 
model directly, which is 
a requirement of the 
query.
The repository contains 
an AI-oriented 
quantitative investment 
platform, which can 
support the functionality 
mentioned in the query…

Figure 3: Comparison of two different repository search methods.

find_a_new_repository(Repo_name: Sniffles)
{"repo_name": "Sniffles", 
"repo_url": "https://github.com/fritzsedlazeck/Sniffles.git"}

Use a Github repository named Sniffles to help me to 
detect the structural variations in given gene sequences 
and save the structural variations in `output_result.vcf`.

Repository

Since no repository has been 
cached and the query 

specifically mentions the name 
of the repository 'Sniffles', I 

need to find this new 
repository.

Figure 4: An example about the repository search of Sniffles.

find_a_new_repository
(Topics: [Fintech, csi500, LightGBM, backtesting, machine-learning, 
data-science, financial-data, stock-market-analysis])
…
{" repo_name": ”Qlib", 
"repo_url": "https://github.com/microsoft/Qlib.git"}

Since no repository has been 
cached, I have to find a new 
one. I need a repository that 

provides data from the A 
market (csi500) and supports 
training a LightGBM model.

I am a fintech researcher aiming to utilize data from the 
A market (csi300) to train a LightGBM model. You 
should give me the back test result.

The repository provides a 
way to load and prepare 

data, train a LightGBM model, 
and perform back-testing, 
which aligns with the query 

requirements...

Repository

Figure 5: An example about the repository search of Qlib.

ment, there exist some bugs in it. In this situation, OpenAgent
proactively seeks solutions by reviewing pull requests (PRs)

and modifies the dockerfile accordingly to rectify the bugs
(Figure 7).



Report: 
1. Environment has beed set and data has 

been prepared.
2. The required data has been downloaded 

to the '/data' directory.

check_file_or_directory (Path:/aizynthfinder)
This directory is too large to be shown. Please choose a smaller 
subdirectory. And the subdirectories of this directory are: …
check_file_or_directory (Path:/aizynthfinder/aizynthfinder)
Content of this directory:…
>> cd /aizynthfinder && conda install python=3.9 && python 
-m pip install aizynthfinder
......
Executed successfully. The output of the execution is omitted.
>> cd / && download_public_data /data
0%|      |

Traceback (most recent call last):
......
FileNotFoundError: [Errno 2] No such file or directory: 
'/data/uspto_model.hdf5’

>> cd / && mkdir data && download_public_data /data
100%|██████████|
Executed successfully. The output of the execution is omitted.

First, I will check if there is 
an existing Dockerfile in the 

repository.

There is no Dockerfile in the 
root directory. Let's check the 
subdirectories for a Dockerfile.

There is no Dockerfile in the 
repository. I will now install 
the necessary packages. The 
readme file states that the 

project requires python 
version 3.9 - 3.11. I will 

install python 3.9 and then 
install the aizynthfinder 

package.

Now, I will download the 
necessary data using the 
'download_public_data' 

command. I will download the 
data to '/data' directory.

It seems the '/data' 
directory does not exist. I 

will create it and then try to 
download the data again.

Docker Image

Figure 6: An example about the repository setup of AiZynthFinder.

Efficient Execution of Complex User Queries. OpenA-
gent capably handles the execution phase, addressing various
challenges that arise with complex user queries. An exam-
ple includes a scenario where the agent needed to install
additional tools (e.g., “curl”) mid-process to fulfill a data
download request (Figure 8). In another instance, for a query
requiring transaction details in Qlib (Figure 9), OpenAgent re-
solved a missing directory issue by consulting GitHub Issues
and adapting the configuration file to generate the required
output. For example, a query asks OpenAgent to download
specific data for analysis (see in Figure 8). During the apply
process, the agent found that the “curl” had not been installed
and then it used “apt-get” to install “curl” before going on.
For another example, a user query asks OpenAgent to give
the transaction details (see in Figure 9). OpenAgent first ran
the repo but when it tried to get the transaction details in
the “record” directory, it found that there exists no “record”
directory in the repository. Next, OpenAgent resorted to the
Issue from GitHub and found an issue that can solve the
record output problem. Then, it modified the configuration
file according to the issue content and re-run the command.

All the above phenomena demonstrate the robustness and
flexibility of our method which can handle various non-
standardized GitHub repositories to extend them as tools
to accomplish user queries. The agent effectively navigates
and utilizes non-standardized GitHub repositories, extending
their functionalities to meet diverse user queries. This success
can be attributed to our designed human experience learning,
which enables OpenAgent to focus on resolving subtasks by
referring to human practice experience.



Report: 

Environment has beed set and data has been 
prepared.

check_file_or_directory (Path:/Bringing-Old-Photos-Back-to-Life)
This directory is too large to be shown. Please choose a smaller 
subdirectory. And the subdirectories of this directory are: …

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Error: manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found: 
manifest unknown: manifest unknown
read_pulls_to_solve_problem
(Query:"Dockerfile manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found”)

I need to check whether 
there is an existing 

Dockerfile in the repository. 
If there is, I can use it to 
set up the environment.

There is a Dockerfile in the 
repository. I will use it to 
set up the environment.

I have modified the 
Dockerfile according to the 
pull request. Now I will try 
to set up the environment 
again using the modified 

Dockerfile.

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Docker container built successfully. You can choose to finish directly.

The Dockerfile has a problem, 
it can't find the manifest for 

nvidia/cuda:11.1-base-
ubuntu20.04. I will read the 
pulls to see if anyone has 

solved this problem.
The PR mentions that it addresses 

the issue of the original base 
image no longer being available, 

which is the problem described. It 
also states that it has updated 
the base image to a current and 
available one, which should solve 
the Dockerfile manifest issue.

This Pull Request addresses two primary issues:
- The original base image was no longer available. 
I've updated it to use a current and available image.
…

modify_file_content
(Query: Refer to the file at `/pr_diff.txt` and make corresponding 
modifications to the Dockerfile.)

I need to modify the 
Dockerfile according to the 

difference in the pull request 
to solve the problem。

The PR mentions that it addresses 
the issue of the original base 

image no longer being available, 
which is the problem described. It 
also states that it has updated 
the base image to a current and 
available one, which should solve 
the Dockerfile manifest issue.

check_file_or_directory (Path:/pr_diff.txt）
diff --git a/Dockerfile b/Dockerfile
index 8764e00..a88e0df 100644
--- a/Dockerfile
+++ b/Dockerfile
modify_entire_file
(Query: 1. Change the first line from ’…’ to ’…’. 2. After the 
'RUN apt update...' line, add… 3. Replace all occurrences of …)
FROM nvidia/cuda:11.1-base-ubuntu20.04
FROM nvidia/cuda:12.1.0-base-ubuntu20.0
--- +++

The content of '/pr_diff.txt' shows 
the differences between the old 

and new versions of the Dockerfile. 
I can use this information to 

modify the Dockerfile accordingly.

Docker Image

Figure 7: An example about the repository setup of Bringing-Old-Photos-Back-to-Life.



>> mkdir -p Sniffles/input && 
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl 
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam > 
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai > 
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam.bai
Error: /bin/sh: 1: curl: not found
>> apt-get update && apt-get install curl -y
Get:1 http://deb.debian.org/debian bullseye InRelease [116 kB]
Get:2 http://deb.debian.org/debian-security bullseye-security InRelease [48.4 kB]
…
>> mkdir -p Sniffles/input && 
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl 
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam > …… &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai > ……
% Total    % Received % Xferd Average Speed   Time    Time     Time  Current
100 1551M  100 1551M    0     0  1647k      0  0:16:04  0:16:04 --:--:-- 2568k
>> sniffles –I 
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam -v 
Sniffles/output_result.vcf
Running Sniffles2, build 2.2
…
Analyzing 193107 alignments total...
193107/193107 alignments processed (100%, 8657/s); 195/195 tasks done; parallel 
0/4; 921 SVs.

The first step is to create a 
directory to store input data 

and then download the 
specified files into that 
directory. The original 

commands are usable here, I 
just need to modify the 
directory to place the 

downloaded data.

Use a github repository named "Sniffles" to help me to detect the 
structural variations in given gene sequences and save the structural 
variations in output_result.vcf. Data of the original sequence should 
be downloaded using this command: mkdir -p input 
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-
study-testdata Report

It seems 'curl' command is not 
found. This could be due to 

curl being not installed in this 
environment. I'll install 'curl' 

using 'apt-get install'.

Now that 'curl' is installed, I'll 
retry the command for 

downloading the data files into 
the 'input' directory.

Now that the data has been 
downloaded successfully, the 
next step is to run Sniffles 
to detect the structural 
variations in the gene 

sequences. According to the 
README file, the command to 
call Sniffles is like … I can 
modify this command to use 
the data that we have just 

downloaded and set the 
output file as 

`output_result.vcf` as 
required by the user.

SVs Record

Figure 8: An example about the repository apply of Sniffles.



check_file_or_directory 
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml)
Content of this file: ……
modify_file_content
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml,
Modify Query: Change the start_time to '2008-01-01', the end_time to '2019-12-
31', the fit_start_time to '2008-01-01', and the fit_end_time to '2018-12-31'.)

Before executing the 
command, I need to check 
the content of the yaml 

configuration file to ensure 
it is set up correctly for the 

given task.

According to the readme 
file, the yaml configuration 
file needs to be modified to 

match the task's 
requirements. The 

start_time, end_time, 
fit_start_time, and 

fit_end_time need to be 
adjusted to reflect the 
time range from 2008 to 

2018 for training and 2018 
to 2019 for testing.

I am a fintech researcher aiming to utilize data from the A market 
(csi500) spanning from 2008 to 2018 to train an LightGBM model, with 
the goal of forecasting market conditions from 2018 to 2019, and get 
its backtest result. You should not only give me the back test result, 
but also the transaction details in csv format of how to get such result.

The content of the current 
file contains the fields that 

need to be modified 
according to the request. 

The 'start_time', 'end_time', 
'fit_start_time', and 
'fit_end_time' are all 

present and can be changed 
to satisfy the requirement.

modify_entire_file
( Query: Change the 'start_time' value to '2008-
01-01', the 'end_time' value to '2019-12-31', the 
'fit_start_time' value to '2008-01-01', and the 
'fit_end_time' value to '2018-12-31'.)
data_handler_config: &data_handler_config

start_time: 2008-01-01
end_time: 2020-08-01 2019-12-31
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31 2018-12-31

I need to find out how to 
get the transaction details 
in csv format, so I should 
check the issues to see if 

anyone has solved this 
problem or mentioned it 

before.

Read_Issues_to-Solve_problem
(Query: How can I get transaction details in csv format from the analysis results?)

According to the issue 
conversation, you can 

extract the transaction 
details by modifying the 

record field of your 
configuration yaml file. Add 

the following 
configuration: …

……
A: Hi all, I am just curious that if there exists a 
function already that could yield something like two 
lists which include current trading decisions for stocks. 
B: I add … to … and it works. 

modify_file_content
(Query: In … section, add the following executor configuration: …)

According to the issue 
conversation, you can 

extract the transaction 
details by modifying the 

record field of your 
configuration yaml file. Add 

the following 
configuration: …

As per the issue 
conversation, to get 

transaction details, I need 
to add the executor 
configuration to the 
'port_analysis_config' 

section of the yaml file. 
The new executor 

configuration will enable 
Qlib to generate and log 

detailed transaction records. modify_entire_file
(Query: In … section, append …)
port_analysis_config: &port_analysis_config

executor: 
class: SimulatorExecutor
module_path: qlib.backtest.executor
kwargs: 

time_per_step: day 
generate_portfolio_metrics: True 
verbose: True

>> cd qlib/examples && qrun 
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
'The following are analysis results of benchmark return(1day).’

risk
mean 0.000477
std 0.012295
annualized_return 0.113561

Now that the configuration 
file has been updated to 

meet the query's 
requirements, I'll execute 

the 'qrun' command with the 
configuration file to train 

the LightGBM model and get 
the backtest result.

>> cd qlib/examples && qrun 
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
[2018-01-02 00:00:00]: sell SH601375, price 1.11, amount 2317104.654033043, deal_amount
2317104.654033043, factor 0.17716467380523682, value 2569786.93, cash 6101362.80.
[2018-01-02 00:00:00]: sell SH601155, price 1.32, amount 2128948.000840169, deal_amount
2128948.000840169, factor 0.0456189289689064, value 2818432.00, cash 8915567.15.
……

Now that the executor 
configuration has been 

added to get transaction 
details, I'll re-run the 'qrun' 
command with the updated 
configuration to get the 

backtest result and 
transaction details.

Long_text_handle

The output is saved in 
`/output.txt`, you should …

The LightGBM model was 
trained using the A market 
data from 2008 to 2018 to 
forecast market conditions 

for 2018 to 2019. The 
program has generated a 

series of transaction 
details, such as buy and 
sell records for different 
stocks with their prices, 

amounts, and deal amounts 
indicated.

def process_output_lines(output):
......

transaction_details = process_output_lines(output)
if transaction_details:

if not os.path.exists(directory):
os.makedirs(directory)

df = pd.DataFrame(......)
df.to_csv(......)

python /data_handler.py

The handled data is saced in 
`/result/transaction.csv`.

download_directory_from_container
(container path: `/result/transaction.csv`, local path : `.`)
`/result/transaction.csv` has been successfully downloaded to local at `.`.

Now that the executor 
configuration has been 

added to get transaction 
details, I'll re-run the 'qrun' 
command with the updated 
configuration to get the 

backtest result and 
transaction details.

Back test report Transaction Deatails

Figure 9: An example about the repository apply of Qlib.


