Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation

Bohan Lyu^{1*}, Yadi Cao^{2*}, Duncan Watson-Parris², Leon Bergen², Taylor Berg-Kirkpatrick², Rose Yu²

> ¹Tsinghua University ²University of California, San Diego *Equal Contribution

Background

Large Language Models (LLMs) demonstrate promising capabilities in solving **simple** scientific problem like [7]: When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is (A) 9.8 m/s²

- (B) more than 9.8 m/s^2
- (C) less than 9.8 m/s²
- (D) Cannot say unless the speed of throw is given.

However, they often produce hallucinations for **complex** one like:

Question: How much will the temperature of Ewo in 2068 under ssp126 change if the emission of CO2 is decreased by -25%? $(A) -0.13081711$ $(B) -0.16986465$ $(C) -0.09639389$ $(D) -0.05745936$ **Correct Answer: B**

XXX

Research Question: **How to Align LLMs with the physical world for scientific problems?**

Existing Approaches:

Fine-tune the LLM with data from human annotation and stronger

Mind's Eye

MuJoCo Simulation

■ Simulation based Prompts Injection

Motivation

Fine-tune an LLM:

 Requires massive data Costly in scientific settings Prone to hallucination

 Efficient inference Ideal for simpler problems

Employ LLM as Agent:

 Reliable solutions by tools Suitable for complex problems

Can we combine advantages from both approaches?

Our method: **Adapting** while **Learning**

Pipeline of Our Method: (a) World Knowledge Distillation, (b) Tool Usage Adaptation, (c) Model improvement visualization.

Our method: World Knowledge Distillation (**Learning**)

Question: How much will the temperature of Ewo in 2068 under ssp126 change if the emission of CO2 is decreased by -25%? $(A) -0.13081711$ \boldsymbol{x} $(B) -0.16986465$ $(C) -0.09639389$ $(D) -0.05745936$ **Correct Answer: B Assistant:** Call query lat and lon with parameters {'city name': 'Ewo'} Feedback from query lat and lon: latitude: -0.8742, longitude: 14.8167. Assistant: Call div greenhouse with parameters {'longitude': 14.8167, 'latitude': -0.8742, 'setting': 'ssp126', 'vear': 2068. 'delta CO2': -0.25. 'delta CH4': 0} Feedback from diy greenhouse: The temperature is 27.52265167236328. Assistant: Call future temperature with parameters {'longitude': 14.8167, 'latitude': -0.8742, 'year': 2068, ${I_e}_t$ 'setting': 'ssp126'} Feedback from future temperature: The temperature is 27.692516326904297. **Assistant:** Call answer question with parameters {'thought': 'The temperature for Ewo in 2068 under the ssp126 scenario with no changes in emissions is 27.692516326904297. With a 25% decrease in CO2 emissions, the temperature is 27.52265167236328. The difference is 27.692516326904297 - 27.52265167236328 = 0.16986465454101562.', 'answer': 'B', 'sloving_process': '1. Retrieved the latitude and longitude of Ewo. 2. Predicted the temperature for 2068 under the ssp126 scenario with a 25% decrease in CO2 emissions. 3. Retrieved the temperature for 2068 under the ssp126 scenario with no changes in emissions. 4. Calculated the difference between the two temperatures to find the change.' } To calculate the temperature change in Ewo by 2068 under the ssp126 scenario with a 25% decrease in $CO₂$ emissions, we first identify Ewo's location at latitude -0.8742 and longitude 14.8167. The temperature for Ewo in 2068 under the ssp126 scenario with no changes in emissions is determined to be 27.6925°C. With a 25% decrease in CO₂ emissions, the temperature is calculated to be 27.5227°C.

The difference between the two temperatures is:

 \boldsymbol{y}

 $27.6925^{\circ}C - 27.5227^{\circ}C = 0.1699^{\circ}C$

This matches option B from the given choices. Therefore, the answer is **B**.

1. LLM generates the solution for a problem with tools:

$$
y \sim \pi(\cdot \mid x, \{I_e\}_t, P_f)
$$

2. Ground the LLM with:

 $J_{\text{WKD}}(\theta, \mathcal{D}) = -\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(\cdot | x, \{I_e\}_t, P_t)} [\log \pi_\theta(y | x, P_n)]$

3. For open-ended problems, we use tools to rank different answers and train LLMs with DPO.

Our method: World Knowledge Distillation (**Learning**)

Our method: Tool Usage Adaptation (**Adapting**)

 $[t\sim\pi(\cdot|x,E,P_f)]$

{'name': 'answer_question', 'parameters': {'thought': 'I can answer the problem directly.', 'answer': " To calculate the temperature change in Ewo by 2068 under the ssp126 scenario with a 25% decrease in $CO₂$ emissions, we first identify Ewo's location at latitude -0.8742 and longitude 14.8167. The temperature for Ewo in 2068 under the ssp126 scenario with no changes in emissions is determined to be 27.6925 °C. With a 25% decrease in CO_2 emissions, the temperature is calculated to be 27.5227 °C. The difference between the two temperatures is:27.6925°C - 27.5227°C = 0.1699°C. This matches option B from the given choices. Therefore, the answer is B'' } $|y\sim\pi(\cdot|x,\{I_e\}_t,P_f)|$

Assistant: Call query lat and lon with parameters {'city name': 'Ewo'} Feedback from query lat and lon: latitude: -0.8742, longitude: 14.8167.

Assistant: Call div_greenhouse with parameters {'longitude': 14.8167, 'latitude': -0.8742, 'setting': 'ssp126' 'vear': 2068, 'delta_CO2': -0.25, 'delta_CH4': 0}

Feedback from div greenhouse: The temperature is 27.52265167236328.

Assistant: Call future temperature with parameters {'longitude': 14.8167, 'latitude': -0.8742, 'year': 2068. 'setting': 'ssp126'}

Feedback from future_temperature: The temperature is 27.692516326904297.

Assistant: Call answer question with parameters {'thought': 'The temperature for Ewo in 2068 under the ssp126 scenario with no changes in emissions is 27.692516326904297. With a 25% decrease in CO2 emissions, the temperature is 27.52265167236328 . The difference is $27.692516326904297 - 27.52265167236328 =$ 0.16986465454101562.', 'answer': 'B', 'sloving_process': '1. Retrieved the latitude and longitude of Ewo. 2. Predicted the temperature for 2068 under the ssp126 scenario with a 25% decrease in CO2 emissions. 3 Retrieved the temperature for 2068 under the ssp126 scenario with no changes in emissions. 4. Calculated the difference between the two temperatures to find the change.' }

1. Evaluates the LLMs on a dataset and partition the questions into two subsets: Deasy and Dhard.

2. Set different alignment targets for Deasy and Dhard:

$$
J_{\text{Easy}}(\theta, \mathcal{D}) = -\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(\cdot | x, \{I_e\}_t, P_f)} \log \pi_{\theta}(y \mid x, E, P_i).
$$

$$
J_{\text{Hard}}(\theta, \mathcal{D}) = -\mathbb{E}_{x \sim \mathcal{D}, t \sim \pi(\cdot | x, E, P_f)} \log \pi_{\theta}(t | x, E, P_i).
$$

3. Train the model for both easy and hard problems with different targets:

$$
J_{\text{TUA}}(\theta, \mathcal{D}_{\text{easy}}, \mathcal{D}_{\text{hard}}) = \lambda J_{\text{Easy}}(\theta, \mathcal{D}_{\text{easy}}) + (1-\lambda) J_{\text{Hard}}(\theta, \mathcal{D}_{\text{hard}})
$$

Our method: **Adapting** while **Learning**

$$
J_{Mix}(\theta, \mathcal{D}, \mathcal{D}_{easy}, \mathcal{D}_{hard}) = \\ \alpha J_{WKD}(\theta, \mathcal{D}) + (1 - \alpha) J_{TUA}(\theta, \mathcal{D}_{easy}, \mathcal{D}_{hard}),
$$

Knowledge acquired under one scenario (with or without available tools) does not readily transfer to another[4].

We propose a mixed loss that simultaneously considers both WKD and TUA objectives.

Experiment: Datasets Public Datasets: MATH[5], SciBench[6]

Our Custom-Created Datasets: Mujoco, PDE, Climate, Epidemiology

(a) Question Generation Pipeline

(b) Demo Questions

Climate

How much will the temperature of Gikongoro in 2018 under ssp585 change if the emission of CO2 is decreased by -25%?

PDE

In a 2D population spread process with $\{$ finitial condition $\}$ and $\{$ fboundary condition $\}$, what is the population at (x,y)=(59,2) km after 8 years? (D=0.88, Lx=96 km, Ly=8 km)

Epidemiology

{{scenario description}} {{initial states}} On which day will the number of hospitalized cases in California reach its maximum?

Experiment: Answer Accuracy

Overall Evaluation

Experiment: Tool Usage Accuracy

Problems of different difficulty levels on MATH dataset

Conclusion

We introduce a novel two-stage training paradigm that enables LLMs to adaptively solve real-world scientific problems of varying complexity.

We construct four additional datasets spanning various scientific domains, including both questions and solutions, to facilitate future research in this direction.

Experiments on both custom and public datasets demonstrate the effectiveness of our work, resulting in better answer accuracy and more intelligent tool use.

References

[1] Zhang, D., Hu, Z., Zhoubian, S., Du, Z., Yang, K., Wang, Z., Yue, Y., Dong, Y., and Tang, J. Sciglm: Training scientific language models with self-reflective instruction annotation and tuning, 2024b.

[2] Thulke, D., Gao, Y., Pelser, P., Brune, R., Jalota, R., Fok, F., Ramos, M., Wyk, I., Nasir, A., Goldstein, H., et al. Climategpt: Towards ai synthesizing interdis- ciplinary research on climate change. arXiv preprint arXiv:2401.09646, 2024.

[3] Liu, R., Wei, J., Gu, S. S., Wu, T., Vosoughi, S., Cui, C., Zhou, D., and Dai, A. M. Mind's eye: Grounded language model reasoning through simulation. In The Eleventh International Conference on Learning Representations.

[4] Zeng, A., Liu, M., Lu, R., Wang, B., Liu, X., Dong, Y., and Tang, J. AgentTuning: Enabling generalized agent abilities for LLMs. In Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Findings of the Association for Computational Linguistics ACL 2024 [5] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J. Measuring mathematical problem solving with the math dataset. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

[6] Wang, X., Hu, Z., Lu, P., Zhu, Y., Zhang, J., Subramaniam, S., Loomba, A. R., Zhang, S., Sun, Y., and Wang, W. SciBench: Evaluating College-Level Scientific Problem- Solving Abilities of Large Language Models. In Pro- ceedings of the Forty-First International Conference on Machine Learning, 2024b.

[7] Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;Song, D.; and Steinhardt, J. 2021a. Measuring Massive Multitask Language Understanding.

Thanks!

Paper Link: <https://arxiv.org/abs/2411.00412>

Bohan Lyu lyubh22@gmail.com <http://lyubh.cn/>

QA Veeramakali Vignesh Manivannan