Adapting While Learning: Grounding
LLM:s for Scientific Problems with Intelligent
Tool Usage Adaptation
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Background

Large Language Models (LLMs) demonstrate promising capabilities in solving simple scientific

problem like [7]:

When you drop a ball from rest it accelerates downward at 9.8 m/s?. If you instead throw it
downward assuming no air resistance its acceleration immediately after leaving your hand is
(A) 9.8 m/s?

(B) more than 9.8 m/s?

(C) less than 9.8 m/s?

(D) Cannot say unless the speed of throw is given.

XXX

However, they often produce hallucinations for complex one like:

Question: How much will the temperature of Ewo in 2068 under ssp126 change if the emission of CO2 is
decreased by -25%?

(A)-0.13081711

(B) -0.16986465

(C) -0.09639389

(D) -0.05745936

Correct Answer: B




Research Question: How to Align LLMs with the physical
world for scientific problems?

Existing Approaches:
1. Fine-tune the LLM with data from human annotation and stronger
models [1, 2] e [% emifa] R2)
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Motivation

Fine-tune an LLM:

X Requires massive data
X Costly in scientific settings
X Prone to hallucination

Efficient inference
Ideal for simpler problems

%

2 Can we combine ad

A4

Employ LLM as Agent:

X Costly emulation
X Over-reliance on provided tools
X Fail to internalize knowledge

4 Reliable solutions by tools
4| Suitable for complex problems

<

vantages from both approaches?



Our method: Adapting while Learning

(a) World Knowledge Distillation (Learning) ; Hard Easy (c) Model Performance
LLMs Interact with tools to generate solutions
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Pipeline of Our Method: (a) World Knowledge Distillation, (b) Tool Usage Adaptation, (c) Model improvement visualization.
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Our method: World Knowledge Distillation (Learning)

Question: How much will the temperature of Ewo in 2068 under ssp126 change if the emission of CO2 is
decreased by -25%?

(A)-0.13081711

(B) -0.16986465

(C) -0.09639389

(D) -0.05745936

Correct Answer: B

Assistant: Call future_temperature with parameters {’longitude’: 14.8167, ’latitude’:

setting’: ’ssp126°}
Iieedback from future_temperature: The temperature is 27.692516326904297.

Assistant: Call answer_question with parameters { thought’: "The temperature for Ewo 1n 2068 under the
ssp126 scenario with no changes in emissions is 27.692516326904297. With a 25% decrease in CO2 emissions,
the temperature is 27.52265167236328. The difference is 27.692516326904297 - 27.52265167236328 =
0.16986465454101562.’, *answer’: °B’, ’sloving_process’: ’1. Retrieved the latitude and longitude of Ewo.
2. Predicted the temperature for 2068 under the ssp126 scenario with a 25% decrease in CO2 emissions. 3.
Retrieved the temperature for 2068 under the ssp126 scenario with no changes in emissions. 4. Calculated the
difference between the two temperatures to find the change.’ }

e Ewo’}
eedback from query_lat_and_lon: latitude: -0.8742, lon 1tude 14.8167. I
Assnstant Call diy greenhouse w1th parameters {’longitude’: 14.8167, ’latitude’: -0.8742, ’setting’: ’ssp126°,
CH4. 0}
reenhouse: The temperature is 27.52265167236328. |

~0.8742, 'year’: 2068,

To calculate the temperature change in Ewo by 2068 under the ssp126 scenario with a 25% decrease in CO,
emissions, we first identify Ewo’s location at latitude -0.8742 and longitude 14.8167.

The temperature for Ewo in 2068 under the ssp126 scenario with no changes in emissions is determined to be
27.6925°C. With a 25% decrease in CO, emissions, the temperature is calculated to be 27.5227°C.

The difference between the two temperatures is:
27.6925°C — 27.5227°C = 0.1699°C

This matches option B from the given choices. Therefore, the answer is B.

1. LLM generates the solution for a

problem with tools:

y~ (|, {l}s, Py)

2.  Ground the LLM with:

Jwkp (0, D) = —EgnD ymr (e {I.}..P;) logTo (Y | T, Pn)]

3. For open-ended problems, we use

tools to rank different answers and

train LLMs with DPO.



Our method: World Knowledge Distillation (Learning)

(a) Supervised Fine-tuning

Multi-Choice Question
How much will the temperature of LLM
Ribeira Brava in 2061 under ssp337 —* +
change if the emission of CO2 is Tools
increased by 25%7?
A.0.05B.0.12C. 0.23 D.0.30

(b) Preference Optimization

Open-Ended Question

Design a new maritime route between
Busan and Margaret River that would
increase BC levels along the route by
3.0%, to minimize the global average
temperature increase in 2027 under
ssp585.

S  Eummd

1. Retrieve Data:
Time: 2061, Place: Ribeira
Brava, Setting: ssp337

21.89°C Answer

The temperature will
— LLM ——increaseby22.12-21.89=

2. Emulate Scenario 0.23 °C. The answer is C.

Time: 2061, Place: Ribeira

Brava, Setting: ssp337, SE L
Delta C0,: 0.25
Rank
1
Temperature: 6.3424°C V1
Y
V2
— Tools — Temperature: 6.3449°C — ¥,
Y
Y3 Invalid: Interact with
the land. Y3



Our method: Tool Usage Adaptation (Adapting)

(b) Tool Usage Adaptation Tool-Using Trace Sampling
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{’name’: *answer_question’, ’parameters’: {’thought’: I can answer the problem directly.’, ’answer’: ” To
calculate the temperature change in Ewo by 2068 under the ssp126 scenario with a 25% decrease in CO9
emissions, we first identify Ewo’s location at latitude -0.8742 and longitude 14.8167. The temperature for Ewo
in 2068 under the ssp126 scenario with no changes in emissions is determined to be 27.6925°C. With a 25%
decrease in CO, emissions, the temperature is calculated to be 27.5227°C.The difference between the two
temperatures is:27.6925°C - 27.5227°C = 0.1699°C. This matches option B from the given choices. Therefore,

the answer is B’} } yN’]T(-'x,{Ie}t,Pf)
IAssistant: Call query_lat_and lon with parameters {’city_name’: "Ewo’} | t~m ( . | z,E,P f )

Feedback from query_lat_and _lon: latitude: -0.8742, longitude: 14.8167.

Assistant: Call diy_greenhouse with parameters {’longitude’: 14.8167, ’latitude’: -0.8742, ’setting’: ’ssp126’,
year’: 2068, delta CO2’: -0.25, *delta CH4’: 0}

Feedback from diy_greenhouse: The temperature is 27.52265167236328.

Assistant: Call future_temperature with parameters {’longitude’: 14.8167, ’latitude’: -0.8742, ’year’: 2068,
‘setting’: ’ssp126°} _

Feedback from future_temperature: The temperature is 27.692516326904297.

Assistant: Call answer_question with parameters {’thought’: *The temperature for Ewo in 2068 under the
ssp126 scenario with no changes in emissions is 27.692516326904297. With a 25% decrease in CO2 emissions,
the temperature is 27.52265167236328. The difference is 27.692516326904297 - 27.52265167236328 =
0.16986465454101562.’, ’answer’: ’B’, ’sloving_process’: 1. Retrieved the latitude and longitude of Ewo|
2. Predicted the temperature for 2068 under the ssp126 scenario with a 25% decrease in CO2 emissions. 3.
Retrieved the temperature for 2068 under the ssp126 scenario with no changes in emissions. 4. Calculated the
difference between the two temperatures to find the change.’}

1.  Evaluates the LLMs on a dataset and
partition the questions into two
subsets: Deasy and Dhard.

2. Setdifferent alignment targets for Deasy
and Dhard:

JEasy(oa D) = _E.'END,yNW('|:L‘,{Ie}t,Pf) log 779(?/ | z,E, Pz)

Juard(0, D) = —Egnp tmor(-|2,E,P;) lOg To(t | 7, E, F;).

3. Train the model for both easy and hard
problems with different targets:

JTUA(Ha Deasya Dhard) = )‘JEasy(aa Deasy) + (1 - A)JHard(ea Dhard)



Our method: Adapting while Learning

IMix (6, D, Deasy, Dhard) =

OAJWKD(H, D) + (1 — a)JTUA(preasx, Dhard);

Knowledge acquired under one scenario (with

or without available tools) does not readily
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Experirnent: Datasets Public Datasets: MATH[5], SciBench[6]
Our Custom-Created Datasets: Mujoco, PDE, Climate, Epidemiology

(a) Question Generation Pipeline

P \ 4 . . )\
. ~ Multi-Choice
Expert Consultation Question Templates R Questions
b g How much will the temperature of {{city}} in {{year}} L with Answers )
under {{scenario}} change if the emission of CH4 is
Emulator : = e )
. ) {{increase/decrease}} by {{percentage}}% ? > Open-Ended
Functionality ), _
L Questions )

(b) Demo Questions

Mujoco PDE

SR % In a physics laboratory, a double pendulum
= A experiment is set up with the following
O ad parameters: {{parameters}}

§ Z Q\ How does the position of the first pendulum

change over the 1-second observation period?

In a 2D population spread process with
{{initial condition}} and {{boundary condition}},
what is the population at (x,y)=(59,2) km after

8 years? (D=0.88, Lx=96 km, Ly=8 km)

Climate Epidemiology

N |_'|°W much will the temperature of Giko‘ngf)ro {{scenario description}} {{initial states}} On B
‘/i} L.C\(P‘ in 2018 under ssp585 change if the emission which day will the number of hospitalized %
¢ i ) . . . . .
, : of CO2 is decreased by -25%?7? cases in California reach its maximum? oy




Experiment: Answer Accuracy
Models Mujoco PDE  Climate Epidemiology MATH SciBench Average O 1l Eval .
Llama3.1-70B 46.79 55.83  37.50 30.83 7373 45.00 48.28 verall Bvaluation
GPT40 52.86 69.17 35.83 32.50 81.92 71.67 57.32
GPT40-mini 51.79 70.83 30.00 35.83 80.79 68.33 56.26
Claude3.5-Sonnet 48.57 65.83 32.50 35.00 80.23 67.50 54.94
Llama3.1-8B (Base)-P, 28.57 31.09 30.83 21.67 54.24 17.50 30.65
Llama3.1-8B (Base)- Py 59.32 61.67 77.50 57.78 69.23 31.67 59.53
Llama3.1-8B-Ours-P, 55.00 75.00 80.00 51.11 61.02 30.83 58.83
Llama3.1-8B-Ours-P; 64.47 78.33 83.33 74.44 62.15 34.17 66.15
Base- 50.0 45.0 43.3 342 317 i) 425 617 % . 1.0 0.93
& » Win Rate on 089 069 057 vp, T SFT
Base-Pf- 55.0 50.0 45.8 40.8 383 =) 43.3 | ) 0.8 0.78 0.79 = Ours
Ours- 56.7 54.2 50.0 55.0 48.3 45.8 50.8 : b Open—ended prOblemS 0.69 0.66 0.69
% Ours-Pi- 65.8 59.2 45.0 50.0 48.3 475 57.5 -GO% 306-
g Ours-RL- @:iel 61.7 51.7 51.7 50.0 48.3 65.0 SOE 504_ 0.38
§ Ours-RL-Pi ; 69.2 1. W] s . 0.31
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E . ¢ T 1 U A ] Tool (I') Not Choosing Tool (V)
xperiment: 100 Ssage€ AcCcurac
p g y Easy (E) ET EN (V)
Hard (H) | HT (V) HN
Models Mujoco PDE  Climate Epidemiology MATH SciBench Average
Llama3.1-70B 49.66  50.00  48.67 48.94 55.77 50.93 50.66 1l Evaluati
GPT4o 50.30  52.41  48.70 50.57 49.54 50.00 50.25 verall Bvaluation
GPT40-mini 50.34  52.35  48.81 61.84 55.19 68.36 56.15
Claude3.5-Sonnet 50.39 51.27  49.38 54.95 51.57 54.37 5199 1, (_EN__, HT |
Llama3.1-8B (Base) 51.50  50.00  50.35 50.86 49.52 60.22 52,07 2 “ENHET  HNHHT
Llama3.1-8B-Ours _ 61.80 66.67 75.50 66.61 62.46 62.75 65.96
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Conclusion

We introduce a novel two-stage training paradigm that enables LLMs to adaptively solve
real-world scientific problems of varying complexity.

We construct four additional datasets spanning various scientific domains, including
both questions and solutions, to facilitate future research in this direction.

Experiments on both custom and public datasets demonstrate the effectiveness of our
work, resulting in better answer accuracy and more intelligent tool use.

Original World Knowledge Distillation Tool Usage Adaptation
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